This
artist's conception shows the object named WISE J085510.83-071442.5, the
coldest known brown dwarf. This cool star-like body is as frosty as the North
Pole. It is also the fourth closest system to our sun, at 7.2 light-years from
Earth. Image Credit: Penn State University/NASA/JPL-Caltech.
ByANDY FLEMING
NASA's
Wide-field Infrared Survey Explorer (WISE) and Spitzer Space Telescope have
discovered what appears to be the coldest "brown dwarf" known - a
dim, star-like body that, surprisingly, is as frosty as Earth's North Pole.
Images
from the space telescopes also pinpointed the object's distance to 7.2
light-years away, earning it the title for fourth closest system to our sun.
The closest system, a trio of stars, is Alpha Centauri, at about 4 light-years
away.
"It's
very exciting to discover a new neighbour of our solar system that is so
close," said Kevin Luhman, an astronomer at Pennsylvania State
University's Centre for Exoplanets and Habitable Worlds, University Park.
"And given its extreme temperature, it should tell us a lot about the
atmospheres of planets, which often have similarly cold temperatures."
Brown
dwarfs start their lives like stars, as collapsing balls of gas, but they lack
the mass to burn nuclear fuel and radiate starlight. The newfound coldest brown
dwarf is named WISE J085510.83-071442.5. It has a chilly temperature between
minus 48 to minus 13 degrees Celsius.
Previous record holders for coldest brown dwarfs, also found by WISE and
Spitzer, were about room temperature.
WISE
was able to spot the rare object because it surveyed the entire sky twice in
infrared light, observing some areas up to three times. Cool objects like brown
dwarfs can be invisible when viewed by visible-light telescopes, but their
thermal glow - even if feeble - stands out in infrared light. In addition,
the closer a body, the more it appears to move in images taken months apart.
Airplanes are a good example of this effect: a closer, low-flying plane will
appear to fly overhead more rapidly than a high-flying one.
"This
object appeared to move really fast in the WISE data," said Luhman.
"That told us it was something special."
After
noticing the fast motion of WISE J085510.83-071442.5 in March, 2013, Luhman
spent time analysing additional images taken with Spitzer and the Gemini South
telescope on Cerro Pachon in Chile. Spitzer's infrared observations helped
determine the frosty temperature of the brown dwarf. Combined detections from
WISE and Spitzer, taken from different positions around the sun, enabled the
measurement of its distance through the parallax effect. This is the same
principle that explains why your finger, when held out right in front of you,
appears to jump from side to side when you alternate left- and right-eye views.
"It
is remarkable that even after many decades of studying the sky, we still do not
have a complete inventory of the sun's nearest neighbours," said Michael
Werner, the project scientist for Spitzer at NASA's Jet Propulsion Laboratory
(JPL) in Pasadena, California. JPL manages and operates Spitzer. "This exciting
new result demonstrates the power of exploring the universe using new tools,
such as the infrared eyes of WISE and Spitzer."
WISE
J085510.83-071442.5 is estimated to be 3 to 10 times the mass of Jupiter. With
such a low mass, it could be a gas giant similar to Jupiter that was ejected
from its star system. But scientists estimate it is probably a brown dwarf
rather than a planet since brown dwarfs are known to be fairly common. If so,
it is one of the least massive brown dwarfs known.
In
March of 2013, Luhman's analysis of the images from WISE uncovered a pair of
much warmer brown dwarfs at a distance of 6.5 light years, making that system
the third closest to the sun. His search for rapidly moving bodies also
demonstrated that the outer solar system probably does not contain a large,
undiscovered planet, which has been referred to as "Planet X" or
"Nemesis."
Source: NASA/JPL
|
No comments:
Post a Comment