Approximately fourteen billion years ago, our
universe burst into existence in an extraordinary event that initiated the Big
Bang. In an infinitesimally small fraction of a second, the universe expanded
exponentially to a truly gargantuan size, inflating far in excess of the views
of our most powerful telescopes. All this, of course, was just a theory.
Astronomers from the Background Imaging of
Cosmic Extragalactic Polarisation (BICEP2) radio telescope at the South Pole have
announced the first direct evidence for this cosmic inflation. Their data also
represent the first images of gravitational waves, or ripples in space-time, a
major prediction of Einstein’s 1915 Theory of General Relativity, in effect his
theory of gravity. They have been described as the "first tremors of the
Big Bang." Finally, the data confirm a deep connection between the (until
now) irreconcilable pillars of modern physics: quantum mechanics and general
relativity itself.
"Detecting this signal is one of the most
important goals in cosmology today. A lot of work by a lot of people has led up
to this point," said John Kovac (Harvard-Smithsonian Centre for
Astrophysics), leader of the BICEP2 collaboration.
These ground-breaking results came from
observations by the BICEP2 telescope of the cosmic microwave background - a
faint glow left over from the Big Bang. Tiny fluctuations in this afterglow
provide clues to conditions in the early universe. For example, small
differences in temperature across the sky show where parts of the universe were
denser, eventually condensing into became polarized too.
Wilkinson Microwave Anisotropy Probe all-sky Cosmic Microwave Background Radiation (CMBR) image. |
"Our team hunted for a special type of
polarization called 'B-modes,' which represents a twisting or 'curl' pattern in
the polarized orientations of the ancient light," said co-leader Jamie
Bock of Caltech and NASA’s Jet Propulsion Laboratory (JPL).
Gravitational waves trigger ripples in space, seen in this illustration. Image courtesy of NASA |
Gravitational waves squeeze space as they
travel, and this squeezing produces a distinct pattern in the cosmic microwave
background. Gravitational waves have a "handedness," much like light
waves, and can have left- and right-handed polarizations.
"The swirly B-mode pattern is a unique
signature of gravitational waves because of their handedness. This is the first
direct image of gravitational waves across the primordial sky," said
co-leader Chao-Lin Kuo at Stanford University and the SLAC National Accelerator
Laboratory.
The team examined spatial scales on the sky
spanning about one to five degrees (two to ten times the width of the full
Moon). To do this, they travelled to the South Pole to take advantage of its
cold, dry, stable air.
"The South Pole is the closest you can get
to space and still be on the ground," said Kovac. "It's one of the
driest and clearest locations on Earth, perfect for observing the faint
microwaves from the Big Bang."
The signature of primordial
gravitational waves, as seen in the cosmic microwave background in the image,
are twisting patterns known as B-mode polarization. Graphic courtesy of the BICEP Project.
|
They were surprised to detect a B-mode
polarization signal considerably stronger than many cosmologists expected. The
team analysed their data for more than three years in an effort to rule out any
errors. They also considered whether dust in our galaxy could produce the
observed pattern, but the data suggest this is highly unlikely.
"This has been like looking for a needle in
a haystack, but instead we found a crowbar," said co-leader Clem Pryke of
the University of Minnesota.
When asked to comment on the implications of
this discovery, Harvard University theorist Avi Loeb said, "This work
offers new insights into some of our most basic questions: Why do we exist? How
did the universe begin? These results are not only a smoking gun for inflation,
they also tell us when inflation took place and how powerful the process
was."
Technical details and journal papers can be
found on the BICEP2 release website:
Original source: Harvard-Smithsonian Centre for Astrophysics
FEEL THE PB&J (PASSION, BEAUTY, AND JOY) OF THE COSMOS? SHARE IT!
No comments:
Post a Comment